Shallow Convective Plume Drives Subsurface Mixing
In the Seasonally Sea Ice-Covered Southern Ocean
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The Southern Ocean i1s a gateway for approx. 75% of the global ocean's
anthropogenic heat uptake [1] and 40% of its carbon dioxide uptake [1,2]. We

hypothesize that small-scale shallow convective plumes play an T e o (2) Sinking surface
overlooked role in setting the water mass structure of the Southern and displacement Wﬁii?iﬂetfﬁﬁ;g,ﬁt
Ocean, thereby influencing the global climate. We used a non-hydrostatic and rebound

numerical model to reconstruct a plume observed by an AWI mooring in the Weddell
Sea to investigate its dynamics and effects on the local water mass structure.
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4. Results

The model was initialised using means from the mooring The mixed layer under the The plume pumped cold + fresh surface
for 24 h leading up to the plume. Subsequent modelled lead deepened by approx. waters downward at the sea ice lead, leading
temperatures and salinities compare well with observations 75 m, becoming on average to a net increase of heat in the mixed layer

and show rapid plume formation. saltier and slightly warmer (i.e., a downgradient flux of thermocline
Pot. temp., 6 (°C) Abs. salinity (g kg~1) due to entrainment from heat). The resulting domain-mean
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